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Denote by Sn the nth order Fourier polynomial of the odd function f of period
2n equal to I on ]0. n[. The Gibbs phenomenon is caused by the well-known fact
that

. (nx) In., sin t dlun Sn - = - t.
n ..... x not

An analogous Gibbs phenomenon is caused by a similar limiting behaviour
of s:. the nth order trigonometric polynomial interpolating fat jn/n (I ~j~2n).
f' 1995 Academic Press, Inc.

Let f be a periodic real-valued function on IR with period 2n, of bounded
variation on [0, 2n:], and with a jump discontinuity in ~ E [0, 2n:]. Let s:
be the nth order trigonometric polynomial of the form

a* n-l a*
s:(x)=~+ 1: (atcoskx+btsinkx)+-2n cosnx (1)

2 k= 1

which interpolates f at the points

Let the index m be defined by

1~j~2n. (2)

(3)

As n -> <X) the functions s: exhibit a Gibbs phenomenon just as do the
partial sums sn of the Fourier series of f This has been shown in [I] by
investigating the behaviour of s:, s:', and s:" in the points

640'813-7

(1~k~2n) as n-><X).

389
0021-9045/95 $6.00

Copyright ~I 1995 by Academic Press. Inc
All rights of reproduction in any fann reserved.



390 GILBERT HELMBERG

The purpose of this note is to supplement these results by the following
assertion. Without loss of generality suppose

fix) = {~
-I

for ~ < x < ~ + n

for x =~, x = ~ + n

for ~ - n < x < ~.

(4)

THEOREM. Suppose x + ! ¢ 71. Then

(5)

(6)

In (5) the index n runs through those values for which X m < ~; in par­
ticular, this condition is satisfied for every n if ~ is not a rational multiple
of n. In (6) the index n runs through those values for which x m = ~. If
x + ! E 71 then X m + n/2n + nx/n coincides with one of the nodes and the
limits in (5) and (6) coincide with the corresponding values of f

The theorem establishes an analogy with the well known fact [3, II.9 ]
that

. (nx) 2 Inx
sin rhm Sll ~ +- = - ~- dr.

,,--,: n not
(7)

The wave-shaped graphs of the functions defined by the limits (5), (6) and
(7) respectively are responsible for the Gibbs phenomenon in case of
Fourier interpolation resp. approximation.

For the proof note that for f as in (4) the function s,,* is given by

{

( - I)m,,* (- I )i sin ny-- L --.----'---"--
* n j~l sm(y-xm-l- i )

s,,(y)= (_I)m 11* (-I)isinny. _
L . ( ) cos(y Xm-l- i )

n j = 1 sm y - X m -l- j

ifn is even,

ifn is odd

(8)



[1] where
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n* = {n
n-I

if x m <¢,

if xm=~'
(9)

In order to simplify the proof we shall deal with the case of even n.
Keeping in mind that cos y -+ 1 for y -+ 0 the reader may check the validity
of the arguments also for odd n. Putting y = Xm + n/2n + nx/n in (8) we get

* ( n nx) _ . (. 1) 1,,* ( - l)j + I

S" x m + 2n +-; -Sin x+2: n'~~1 . (2)-1-2X)' (10)
J- Sin n

2n

LEMMA 1 [2]. Let (X.E ]0, I[ be fixed.
Then

1"-[""] (-1)1+1
lim - I . =0.
,,-xn ._[ ] . (2J -I-2X )

J- >.II sm 1t
2n

Proof Since I/sin yn is continuous in [(X., I-a], the limit above
amounts to

I

LEMMA 2. Let the positive real numbers hand e be given. Then there
exists an :xo > 0 with the following property: for every:x < (x.o there exists an
inde.\' N(:x, e) such that for every n > N( a, e) and for every choice of [an]
real numbers k j satisfying

one has

I [>.IIJ( I

~ 2:: . k -II
J=1 sm-J--n

2n

where \8\ < e. (11)
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Proof The Taylor series expansion of sin y furnishes

lim (_I_!)jy =!
y~O sin y y 6'

I I Y
-.-=-+-+o(y)
smy y 6

as y -> O.

Choose ~o E ]0, e/2n[ such that 10(y)1 < e/3 as soon as Iyl < 2~on. Then for
n>h/4(~o-~)=N(~,e) one has, uniformly for I ~)~[M],

k.-h
sin~n

. kj+h
sm--n

2n

2n

where led < 2e/3 and hn/6n < e/3. This implies (11). I

Proof of the Theorem. Consider first the case X m < ¢" (3) which implies
n* = n (9). It suffices to consider the factor of sin(x + ~)n in (10). Given
any ~E]O, I[ let n]=[<Xn]. By Lemma I we have

1 n (_1))+1
lim-I----­
n~oon)~1 ' 2)-1-2x

sm 2n n

.I{nl (_I)}+I n (_I))+I}
=hm- L + I:
n~wn J~l . 2)-1-2x '~ _ +1' 2)-1-2xsm n ] n n, sIn n

2n 2n

. I { n, (_ 1)} + 1 n ( _ I ») + ] }
hm - L + I

n~ 00 n ~ 1 . 2) - I - 2x '= n_ + 1 . 2x + 2(n - )) + 1
J sm n J n, sm n

2n 2n

. I { n, (_ I)} + 1 n, - I ( -I)i+ 1 }
=hm- I +I
n~ocn }~l' 2)-1-2x '-0' 2x+2)+1

sm 2n n ]- sm 2n n

= lim ! I (-I») +]{I I} (12 )
n~ oc n '_ 1 . 2) - I - 2x . 2) - I + 2x

J- sm n sm n
2n 2n

We now apply Lemma 2 separately to the two sums in which) respectively
runs through the odd and even values. If first n tends to 00 and then oc
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together with e tend to zero, then the last limit above turns out to be
equal to

8x ~ ( 1)i+ 1 I-; /:1 - (2j - 1)2 - 4x2

= 8: {. _14x2 + k~1 [(4k + I~2 -4x2 - (4k _1~2 -4X2])

8x {I 00 16k }
=-;- 1-4x2-k~1 [(4k+lf-4x2][(4k-I)2-4x2] .

If xm=~ (3) then n* =n-I (9) and in (12) the term for j=O has to be
omitted. In the limit itself this amounts to an addition of (2/n:)· I/( 1+ 2x)
which results in formula (6).

Remark l. If the definition of f as in (4) is changed by putting f( ~) = C
(and for convenience f(~+n:)= -c), then for xm=~ in (12) the term for
j = 0 has to be replaced by its ( - c)-fold. In the limit itself this amounts to
an addition of (2/n:)· (1 + c)/( 1+ 2x) which results in the formula

= sin(x + !)n:. 2 {_l_+_C_
1C 1-2x 1+2x

Remark 2. In order to compute the limit functions up to an error < e
the series may be approximated by a partial sum of at least
K = ~(j3211Ce + 4x 2 + 5) terms. (If e < 8/1CX 2 then the error may con­
veniently be majorized by integrals from K - 1 to 00.) On the interval
[0, 10] the values of the functions (5) and (6) may be computed with an
error smaller than e = 10 - 5 by adding up 255 terms of the series. In agree­
ment with the assertions in [I] on the limiting behaviour of s: for n -+ 00

the maxima computed in this way are

1,28228 .

1,06578 .

for x = 0, 917 in (5),

for x = 0,877 in (6),

while the function (7), as is well known, obtains its maximum

1, 17898 ... for x = l.
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Remark 3. The main idea of this note is already contained in the
following result of de la Vallee-Poussin [2] [4, X example II].

Suppose

Xm<~<Xm+1

and let

i.e.,

(Jll n
~=xm+-'

n

Define for 0 < 0 < I

sin nO"" (-I)j sin nO II t ll
-- I

1/1(0)=-- L --.=-- --dt
n j=o()+j n ol+t

Then

(13)

lim {s,~(~)-[I/I(ell)f(~)+I/I(I-OII)f+(O]}=O. (14)
!J- 'x.

In fact, in the same way as in the proof of the theorem one obtains for
any x ~ 7L

. * ( . nx) _ sin nx { x (- l)jx (- I )j + I }
hm Sn )('" + - I . + L .
II~X n n j=] X-j j=O x+j

sin nx {X (- I )j yc. (- I )i}
=- I ..-I-.-.

n j~OI-.\+j j=oX+j

=I/I(I-x)-I/I(X). (15)

This agrees with (14) but interprets this formula also for values of x otT the
jump abscissa. At the same time this shows that for 0 < x < I (i.e., between
x", and x", + ]) the limit function (15) may be written in the form

. *( nx)_sinnxflt-X-tX-1
hm SII x", + - dt,
n~YC n n 0 1+(
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As a consequence, for x", < ~ one has

. ( 7C 7CX)bm S/~ x", +-2 +-
n-O n n

cos 7CXfl t-l/2-x_t-I/2+x
=-- dt

7C 0 I+t

395

Remark 4. Formula (l5)-and therefore also (5) and (6)-may also be
derived from the interpolation formula

(16)

[2] [4, X example I] applied to f as given in (4), where S/~ is as in (I) and
x) is as in (2). For y = x", + 7Cx/n and Xk = x", formula (16) may be written
as

.*( 7CX)_SinnX +x (_I))(_I)[<)-I)/n]
S" x",+ - L .' .

n n )~-'X ;\-j

Taking into account that the function 1/(.'0. + y) is ultimately decreasing
and convex as a function of y for y -> 00 one obtaines

* ( nx) sin nx ( n (- I )) ,,- I ( - I )1) (I)
S" X m +- =-- L -.-. - L --. +0 -

n n )=l.\-j )=0 X+j n

as n ->00. This agrees with (15).

Remark 5. Recall that the digamma function Pix) is defined by

Pix) = dlog T(x) = T'(x) = I. (~ __I_) _c-!
dx r(x) ,,~I n n+x x

where C is Euler's constant. By (13) one has

.1,. sin nx r (X + I) (X)]

.,.,(.'0.) =-7C-l P -2- - P 2 .

By formula (15) this allows to express the limit function in terms of the
gamma function. This observation is due to N. Ortner and P. Wagner.
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